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Chern-Simons theory, a skein relation for the expectation value of Wilson line operators 
in the adjoint representation of  SU(2) is derived in the large k limit. The result agrees with 
that obtained from rational conformal field theory. The generalization to arbitrary rep- 
resentations is then straightforward, once an impartant phase factor present in our example 
is understood. 

1. Introduction 

Chern-Simons quantum field theory provides a useful framework for understanding 
and generalizing knot and link invariants [l]. One can also show how certain 2d 
integrable lattice models arise naturally, together with the notion of quantum groups 
121. In explicit calculations of these invariants an important role is played by the skein 
relations. Witten has shown that when the gauge field is in the fundamental representa- 
tion of S U ( N )  the Chern-Simons field theory leads to the HOMFLY polynomial [3], 
which is a two-variable generalization of the Jones polynomial [4]. Specifically, the 
skein relation associated with this polynomial was derived. However, in deriving this 
relation essential use was made of the intimate connection between Chern-Simons 
theory in three dimensions and rational conformal field theory (RCFT) in two 
dimensions. In fact recent work [ 5 ]  has shown that generalized skein relations for 
arbitrary groups and representations can be obtained using results from R C ~ ,  such as 
the dimensionality of physical Hilbert spaces and the known eigenvalues of the braiding 
matrix [6]. 

Subsequently, Cotta-Ramusino et a/ [7] derived this skein relation directly from 
the Chern-Simons theory, without making use of results from RCR. The method is 
based on a variational approach [8] and the existence of a Fierz identity for the 
generators of SU( N) in the fundamental representation. However, it should be empha- 
sized that the coefficients in the skein relation are evaluated to first order in the large 
k limit, where k is the integer parameter multiplying the Chern-Simons action. As 
such that method can be regarded as a large k perturbative scheme. To this order, the 
results agree with those obtained from RCFT. 

The main motivation for the present work is to point out that when appiying this 
method to more general cases, one encounters a relative framing phase factor, which 
is not present in the original calculation. The correct interpretation of this phase factor 
is crucial for obtaining results which agree with those from the RCFT method. We 
illustrate this for the case when the gauge field is in the adjoint representation of 
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SU(2); indeed it is for this case that we also have a simple Fierz identity allowing us 
to proceed. The resulting skein relation corresponds to the Akutsu-Wadati polynomial 
[9]. However, having understood the origin of this phase in the simple case, the 
application of the method to general groups and representations can then, in principle, 
proceed. 

The plan of this paper is as follows. In the next section we briefly review the RCFT 

approach to the derivation of skein relations. Following this we apply the variational 
method to the case of the adjoint representation of SU(2), showing that the two methods 
coincide, to order ( l / k ) .  We also present two simple consistency checks on the 
procedure. Section 4 contains our concluding remarks. 

D Birmingham and S Sen 

2. Skein relations from RCR 

In this section we quickly review the derivation of skein relations using knowledge of 
R C ~ T  [ l ,  5 , 6 ] .  To make the discussion concrete, and for comparison with results in 
the following section, we treat the case of the adjoint representation of SU(2). 

The basic idea is to consider an arbitrary link on S 3 ,  and then cut the link on a 
two-sphere S2, exposing a two-sphere with a certain number of marked points. The 
three-sphere with this two-sphere as boundary corresponds to a vector in the physical 
Hilbert space, which we denote by x; the other half of the cut-surface is represented 
by a vector $. Since we are interested in deriving skein relations for the locally 
four-valent planar graphs associated with the link projection, the number of marked 
points will be four. We thus have a two-sphere with four charges, all in the adjoint 
representation of SU(2). One now uses the fact that the physical Hilbert space with 
these four charges has dimension three [I] .  This can be seen simply from the fact that 
for large k, the physical Hilbert space corresponds to the G-invariant subspace of 

X= I n v ( A 0 A O A O A ) .  ( 1 )  

Since 1 0 1  = 2,01,00,, we see that there are three invariants. The subscripts s and a 
correspond to whether the representation occurs symmetrically or antisymmetrically 
in the decomposition. This means that any four vectors in X obey a relation of linear 
dependence. This relation is precisely the skein relation. The four vectors which we 
choose are represented pictorially in figure 1. 

Each configuration differs from the previous one by a diffeomorphism which braids 
two of the charges. This is called the ‘half-monodromy’ operation B [1,6]. The term 
proportional to the identity corresponds to L,,  i.e. a single over-crossing, while the 
remaining terms proportional to B, B2,  B’ correspond to the diagrams Lo, L - ,  L - - ,  
respectively. One now glues these manifolds back together giving the inner product 

L O  L. L-. L .  

Figure 1. Crossings related by successive braidings. 
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relation 

($, [ B 3 -  B2(A, +A,+A, )  + B ( A , A , + A , A , +  A 2 A 3 )  - A , A , A , I ] x )  = 0 ( 2 )  

where the inner product corresponds to the natural pairing of vectors in 4e and its 
dual. Equation ( 2 )  follows simply from the Cayley-Hamilton theorem, where B has 
been diagonalized with eigenvalues A,, i = 1,2,3.  These eigenvalues are known [6] in 

<terms of the conformal dimensions of the various fields which enter in the decompo- 
sition: 

A O A = O , E .  (3) 

(4) 

and are given by 
= *e-ni12hA-h E/ I 

where the i sign depends on whether E. occurs symmetrically or antisymmetrically 
in the decomposition (3). Using the fact that the conformal dimension of a spin j field 
is j ( j + l ) / ( k + 2 ) ,  we find 
iE = +e2n i i ik+21  ( 5 )  

Inserting ( 5 )  in (2), taking the large k limit and multiplying through by ( 1  + (271i ) /k)  

-2n i / lk+2J  - +e-4n i / ik+2J  
A,,=, = -e A E , = o -  1-2 

we arrive at the relation 

where ( W ( L + ) )  represents, in the notation of [7], a Wilson line expectation value with 
a single over-crossing, and so on. Equation (6) is the desired skein relation, and 
corresponds to the Akutsu-Wadati polynomial [9]. 

In the form (6) we have neglected to take into account the relative framing of 
diagrams. In the process of cutting, performing a diffeomorphism E", and gluing hack 
together, one shifts the framing of the diagram by n units, relative to L,. Equation 
( 6 )  thus represents a regular isoptopy invariant, which is invariant under Reidemeister 
moves of type 11 and 111 only. To obtain an ambient isoptopy invariant, which is 
invariant under all three Reidemeister moves, one simply resinserts the relative framing 
factors, see [ l ,  5,7]. 

3. The variational method 

We now come to the main object of the paper, that is to derive the skein relation (6) 
directly from the Chern-Simons action, without making use of results from RCFT. 

Following [7], we begin with the Chern-Simons action in the form 

S = -  k r  d 3 x P P  Tr(A,d,A,+i~A,A,A,). (7) 
471 - 

Here A,, =A; T" is the gauge field, and the Hermitian generators T" are normalized 
in the fundamental representation as Tr(T"Tb)=$Yh. This ensures that once k is 
chosen to take integer values, the action S is invariant under all gauge transformations, 
both large and small. 
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The fundamental property of the action S is that 

It should be pointed out that since the Chern-Simons action is gauge invariant, equation 
(8) will be supplemented with gauge fixing and ghost terms. However, as shown in 
[lo], and discussed at the end of this section, these terms do not affect the analysis. 
If we consider a Wilson line operator 

U ( x , , x , ) = P e x p i  dx’AeR“ (9) JI:; 
then an infinitesimal variation of the path produces a F,, , (x)  insertion, where x is the 
point on the Wilson line at which the deformation is implemented. We have 

U(x,,x,)+ U(x , ,x )  iX’”F;,R”U(x,x,) (10) 
where X*”=dx’ dx”  is the infinitesimal area element centred at x, and there is no 
summation over p, U. 

In order to evaluate the effect of the F,. insertion on ( W ( L ) )  we make use of the 
identity (8). This yields, upon integration by parts, the following relation 

where 0, , . . . ,ON are gauge invariant observables, and Z is the partition function. 
We can now evaluate the expectation value of the deformed Wilson line (lo),  by using 
( 1 1 ) .  The derivative with respect to A in ( 1 1 )  produces a differential line element, 
when acting on a Wilson line. It only remains to check whether or  not this differential 
line element belongs to, or is normal to, the plane of X””. 

Let us proceed to derive the skein relation; we consider the identity shown in figure 
2 ,  where the circle attachment centred at x is to he regarded as a perturbation in the 
background of ( W ( L _ ) ) .  This allows us to relate ( W ( L + ) )  and ( W ( L _ ) )  by 

(12) (W(L+) )=(  W ( L _ ) ) + ( .  . . U(1, x ) i X ~ ’ ” F e , ( x ) R ” U ( x , Z ) U ( 3 , 4 ) .  . .) 
where the second term on the right-hand side measures the effect of the infinitesimal 
deformation. Using ( 1 1 )  in (12), and noting that the functional derivative acts on both 
paths 1 + 2 and 3 + 4, we obtain the relation 

47ii 
( W ( L + ) ) = ( W ( L - ) ) - - Z ( .  . . U , j ( l , ~ ) R ~ U l h ( ~ , 2 ) u “ x ( 3 , x ) R ; r u r , ( ~ , 4 )  . .  .) (13) 

k ,  
where R and R’ are the representations carried by the paths 1 + 2 and 3 -f 4. In deriving 
(13) ,  one must again check in which plane the differential line element lies. At this 
point one can see that since the deformation we are considering is infinitesimal, we 
are in effect dealing with a correction of order Ilk,  since k appears in (11 ) .  

Figure 2. An infinitesimal deformation in the background of (W(L.1). 
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Equation (13) is the basic relation that we need [7]. In our specific example we 
will choose R = R ' =  A, where A is the adjoint of SU(2). In this case we have the 
explicit representation of the generators 

R" = -iE 08, [R", R h ] = i ~ a h r R c .  (14) 

Furthermore in this representation we have the following Fierz identity 

R t R & =  RE,RP,- S,Sxr + S,&. (15) 

Inserting (15) in (13) we can now interpret the various terms pictorially, leading to 

(16) 

where it is important to remember that all terms of O( I l k )  are defined in the background 

At this point it remains only to interpret the final term in (16). To this effect we 
consider (figure 3) the identity which represents a perturbation about (W(L--)). In 
this case (13) leads to 

4vi  
k -- (. . .  U , , ( ~ , X ) R ~ U , , ( ~ , ~ ) U , , ( ~ , X ) R ~ , U , , ( ~ , ~ )  .. .) 

of ( W( L)). 

47ri 
k (W(Lo) )=(W(L-~) ) - - ( . .  . U,,(~,~)RP,U,,(X,~)U,,(~,~)RE,U,,(~,~). .J. (17) 

However, it is at this point that we must address the relative framing phase factor 
mentioned in the introduction. The final term in (16) is defined in the background of 
(W(L-)), while in (17) we have expressed it in the background of (W(L.-)). Since 
these two diagrams differ by a twist of one unit, or in other words a single application 
of the braiding operator B, it is easy to see that the correct interpretation of the final 
term in (16) is in fact equation (17) multiplied on the right-hand side by a factor of 
(1 +4rri/k). This value of this framing phase can also be obtained from the variational 
method [7], and equals e(2r"k+2'''~(R', where cZ(R) = 2 for the adjoint representation. 
Inserting (17) with the phase correction into (16) we get 

To O( 1/ k) we can rewrite this as 

( 2;i) ( 2;i) 
1 - -  (W(L+) ) -  1 + -  (W(L-1) 

Figure 3. An infinitesimal deformation in the background of (W(L..))  
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which agrees with the result obtained from RCFT. This skein relation corresponds to 
the Akutsu-Wadati polynomial [9]. 

We have thus shown, in this simple example, how the method of Cotta-Ramusino 
et al can indeed be used to derive generalized skein relations directly from the 
Chern-Simons theory, without using facts from RCFT. The coefficients in the skein 
relation are determined in the large k limit, and it is a straightforward exercise to 
obtain the O ( l / k )  correction. As we have seen, the basic problem is to interpret 
pictorially the various terms that arise in the Fierz identity. We have uncovered an 
additional subtlety present when the Fierz identity contains terms not encountered in 
the original case [7]. The resolution of this point is important for the application of 
this method to general skein relations. But it is clear that for general groups and 
representations the only subtle point will be in interpreting analogues of the relative 
framing phase which we have encountered above. Thus, having understood this point 
in the simple example, one can now proceed to derive more general skein relations 
with this method. 

Before ending this section, it is useful to point out two simple consistency checks 
on the above procedure. If we connect the points 3 and 2 in figure 1 we find from (19) 
that 

D Birmingham and S Sen 

( 2;i) ( 2;i) 47ri 
1 -- ( W ( i + ) ) -  1 +- ( W ( i - ) ) =  -- ( W(i,))(  W(C,)) k 

where the hat notation is used to distinguish these Wilson line operators from their 
previous counterparts in figure 1,  and CO denotes an unknotted knot. Since the term 
on the right-hand side is already of O ( l / k )  we can replace (W(C,)) by 3. This follows 
from the fact that [ I ]  

c 
(W(C,)) === q + 1 + q-' 

~ 0 . 0  

where Sj,j is the matrix which generates the modular transformation T +  - I / T  among 
the characters ~ ~ ( 7 )  of the affine Lie algebra at level k. Equation (20) is then seen to 
be consistent with the known framing conventions [7,11 

A second interesting check is to use this skein relation to evaluate the expectation 
value of two linked, but unknotted Wilson lines. This is achieved by also connecting 
the points 1 and 4 in figure 1 ,  leading to the relation 

where L ( R , ,  R , )  denotes two linked Wilson lines in the adjoint representation. In the 
large k limit we find its value to he 9, which is in agreement with the result of Witten 
[I], namely ( W ( L ( R , ,  &)I)= SZ,~/SO,O. 

T I  :I d L  --:-+;-" -..+ tLn Cnr:r rlpnpnAenra ~ , f thp  Firr7 iApnt i fv  have ,I 13 W" ,I,, p , , a  ,,U 6 Y'Y'..Y".-- ". I.._ . .-.- ...-....., 
used, namely (15). Since the generators in the adjoint representation are proportional 
to the E symbol, this identity is well known. However, one could just as well choose 
to derive a Fierz identity in the Cartan basis, for example. While the two identities 
will differ, the final results, namely the skein relations, will coincide. 
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To close this section we address the important issue of gauge fixing in the application 
of the variational method. The basic equation used is (8). However, because of the 
gauge invariance of the Chern-Simons action, one must include the necessary gauge 
fixing and ghost terms. This means that equation (8) gets modified to 

where S, denotes the complete quantum action, including the gauge fixing and ghost 
terms; e, C, B denote the ghost, antighost, and multiplier fields, respectively. However, 
as shown in [7], these extra terms do  not effect the important relations (ll)-(l3). This 
follows simply from the BRST invariance of the vacuum and of the observables Oj, and 
from the gauge covariant properties of the Wilson line operators U ( x ,  y ) .  

4. Conclusion 

We have shown that the variational method does indeed allow one to derive generalized 
skein relations, without using knowledge from RCFT. The principal object of the present 
work is to point out that in applying this method to more general situations, one will 
encounter relative framing phase factors, which must be accounted for and interpreted 
in the correct way, in order to obtain results in agreement with the RCFT method. 
However, it should be clear that having understood the interpretation of this phase in 
our simple illustrative example, no more complexity will be encountered in the more 
general case. 
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